SARS-CoV-2 vaccine development
Valneva’s project VLA2001

May 28, 2020
Disclaimer

This presentation does not contain or constitute an offer of, or the solicitation of an offer to buy or subscribe for, Valneva SE shares to any person in the USA or in any jurisdiction to whom or in which such offer or solicitation is unlawful. The Valneva shares may not be offered or sold in the USA. The offer and sale of the Valneva shares has not been and will not be registered under the 1933 US Securities Act, as amended.

Valneva is a European company. Information distributed is subject to European disclosure requirements that are different from those of the United States. Financial statements and information may be prepared according to accounting standards which may not be comparable to those used generally by companies in the United States.

This presentation includes only summary information and does not purport to be comprehensive. Any information in this presentation is purely indicative and subject to modification at any time. Valneva does not warrant the completeness, accuracy or correctness of the information or opinions contained in this presentation. None of Valneva, or any of their affiliates, directors, officers, advisors and employees shall bear any liability for any loss arising from any use of this presentation.

Certain information and statements included in this presentation are not historical facts but are forward-looking statements. The forward-looking statements (a) are based on current beliefs, expectations and assumptions, including, without limitation, assumptions regarding present and future business strategies and the environment in which Valneva operates, and involve known and unknown risk, uncertainties and other factors, which may cause actual results, performance or achievements to be materially different from those expressed or implied by these forward-looking statements, (b) speak only as of the date this presentation is released, and (c) are for illustrative purposes only. Investors are cautioned that forward-looking information and statements are not guarantees of future performances and are subject to various risks and uncertainties, many of which are difficult to predict and generally beyond the control of Valneva.
Valneva’s Value Proposition
Integrated business model with valuable commercial and R&D assets

<table>
<thead>
<tr>
<th>R&D</th>
<th>Commercial Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyme vaccine in Phase 2; data read out from July; strategic collaboration with Pfizer announced April 2020¹</td>
<td>Total sales revenues €129.5m in 2019; +25% vs. 2018</td>
</tr>
</tbody>
</table>
| US/EU market opportunity of ~$1bn per annum
 - Only program in clinical development
 - Pfizer to lead late-stage development and drive commercialization | **IXIARO®**
 - Only licensed JE vaccine for travelers in US CAN, EU; mandatory for US Military
 - Sales > €90m in 2019 |
| **Chikungunya Phase 3 to commence Q4 2020** | **DUKORAL®**
 - Huge synergy with existing infrastructure
 - Possible Priority Review Voucher upside |
| **R&D provides upside for shareholders**
 Two unique vaccines with low R&D risk profile | **Recent transactions underline major valuation disconnect**
 BN product acquisition from GSK @ 4.5x revenue |

1 Valneva PR: [Valneva and Pfizer Announce Collaboration to Co-Develop and Commercialize Lyme Disease Vaccine, VLA15](#)
Valneva: A specialty vaccine company focused on prevention against diseases with major unmet needs

2 unique late stage programs
Lyme
Chikungunya

> 500 people
Four main sites
Six in-market commercial teams

>100 people in R&D
High R&D investment in 2020 to drive Lyme and ChikV late-stage development

Inactivated SARS-CoV-2 vaccine

28 May 2020
Valneva’s Broad Vaccine Clinical Trial Experience*

Summary

- Ran more than 40 Phase 1 & 2 studies and 15 Phase 3 & 4 studies
- Experience in more than six disease areas (tropical diseases, nosocomial infections, influenza, hepatitis C, respiratory, diarrheal, Lyme ..)
- Prophylactic and therapeutic vaccine approaches
- Different routes of application (i.m., s.c., intradermal, oral, topical etc.)
- Experience with study populations from 2 months to 85 years of age and in study populations from healthy adults to ICU patients

* incl. predecessor Intercell
Clinical target product profile of vaccines against Covid-19

Key considerations

- **Immunogenicity/efficacy**
 - Induction of sustainable protection with rapid onset for use during outbreak in a broad population
 - Protection in the population at risk for severe or lethal diseases

- **Safety profile**
 - Acceptable risk - benefit profile

Vaccines solutions are needed as herd immunity will probably not be achieved by natural infections and treatments are not in sight
VLA2001 – SARS-CoV-2 inactivated vaccine

Similarity with other Coronaviruses

- **Coronaviruses**
 - High similarity between SARS-Cov and SARS-CoV-2
 - MERS and other Coronaviruses show limited identity only
 - Lowest level of identity with Alpha-Coronaviruses
 - Highest level of identity in S2 domain of S protein

Percentage amino acid identity of coronavirus spike and nucleocapsid proteins with SARS-CoV-2 proteins

<table>
<thead>
<tr>
<th>Virus type</th>
<th>Virus</th>
<th>Nucleocapsid</th>
<th>S</th>
<th>S1</th>
<th>S2</th>
<th>S1A</th>
<th>RBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-coronavirus</td>
<td>SARS-CoV</td>
<td>90</td>
<td>77</td>
<td>66</td>
<td>90</td>
<td>52</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>MERS-CoV</td>
<td>49</td>
<td>33</td>
<td>24</td>
<td>43</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>HCoV-OC43</td>
<td>34</td>
<td>33</td>
<td>25</td>
<td>42</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>HCoV-HKU1</td>
<td>34</td>
<td>32</td>
<td>25</td>
<td>40</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Alphacoronavirus</td>
<td>HCoV-229E</td>
<td>28</td>
<td>30</td>
<td>24</td>
<td>35</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>HCoV-NL63</td>
<td>29</td>
<td>28</td>
<td>21</td>
<td>36</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

VLA2001 – SARS-CoV-2 inactivated vaccine
Cross-reactivity with other Coronaviruses

- **X-reactivity with SARS-CoV-2**
 - Limited cross-neutralization activity shown between SARS-CoV & SARS-CoV-2 *
 - Strong cross-neutralization activity expected vs circulating SARS-CoV-2 strains

- **X-reactivity among Coronaviruses** **
 - Related Coronaviruses share epitopes that can elicit x-reactive and x-neutralizing antibodies
 - Only one study showing x-neutralizing activity between MERS and SARS-CoV (low titers); otherwise only x-neutralizing activity shown for closely related animal CoVs

Inactivated SARS-CoV-2 vaccine
SARS-CoV-2 vaccines
A view on different approaches

<table>
<thead>
<tr>
<th>Inactivated vaccines</th>
<th>Nucleid acid vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Traditional technology - many licensed vaccines using this platform</td>
<td></td>
</tr>
<tr>
<td>▪ Clear regulatory path (No GMO, No foreign vector) Can be produced at high purity and large scale – significant global manufacturing capability</td>
<td></td>
</tr>
<tr>
<td>Antigen: Whole virion inactivated vaccine (Sinovac Biotech / Wuhan Institute Biol Products) (ongoing trials) / Valneva</td>
<td></td>
</tr>
<tr>
<td>Adjuvants Alum or CpG 1018</td>
<td></td>
</tr>
<tr>
<td>▪ Relatively easy and fast manufacturing process</td>
<td></td>
</tr>
<tr>
<td>▪ So far no preventive vaccines for human use on the basis of RNA or DNA has been licensed – only in clinical trials</td>
<td></td>
</tr>
<tr>
<td>Antigen: Spike protein of SARS-CoV-2</td>
<td></td>
</tr>
<tr>
<td>DNA - Electroporation needed for application (Inovio)</td>
<td></td>
</tr>
<tr>
<td>mRNA in lipid particles (Moderna), (CureVac) BioNTech use three different RNA platforms in lipid particles - uridine RNA, modified RNA, self-amplifying</td>
<td></td>
</tr>
<tr>
<td>Antigens: Modified Spike protein SARS-CoV-2 or only the receptor bindings domain (RBD)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recombinant vaccines</th>
<th>Vector based vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Recombinant vaccines considered a well established approach and technology</td>
<td></td>
</tr>
<tr>
<td>Antigens: Recombinant expressed viral S protein or Recombinant expressed chimeric viral S, N1 and N2 protein with LTB (chimeric LTB part of the protein as adjuvants) (MIGAL / MegVax – Oral application)</td>
<td></td>
</tr>
<tr>
<td>Adjuvanted (Matrix-M adjuvant (saponin-based) (Novavax))</td>
<td></td>
</tr>
<tr>
<td>„Molecular clamp“ technology (trimerization to enhance antigenicity) (Queensland) + Adjuvants CpG or AS0X / (GSK/ Sanofi)</td>
<td></td>
</tr>
<tr>
<td>▪ Already existing licensed vaccines (Ebola, MVA) or candidates in licensing (Adeno)</td>
<td></td>
</tr>
<tr>
<td>Antigens: Spike protein of SARS-CoV-2 or subdomains</td>
<td></td>
</tr>
<tr>
<td>Adenovirus vector - Replication-incompetent vector (E1 deleted), different types; Adenovirus type 26 vector used for Ebola vaccine (Janssen)</td>
<td></td>
</tr>
<tr>
<td>MVA vector - Replication-incompetent vector - native, full-length SARS-CoV-2 spike protein</td>
<td></td>
</tr>
<tr>
<td>Measles vector - live attenuated, replicating virus vector - native or a modified membrane-bound version of the SARS-CoV-2 spike glycoprotein</td>
<td></td>
</tr>
</tbody>
</table>
VLA2001 – SARS-CoV-2 inactivated vaccine
An inactivated SARS-CoV-2 vaccine is positioned to maximize chances of success

Inactivated vaccines in general:
- Inactivated viral vaccines were shown before to be highly effective in humans (e.g. JEV) in 2-dose regimen, generating long-lasting immune responses
- Inactivated vaccines in general have a very good safety profile
- Pre-clinical and clinical paths are straightforward in contrast to some of the other technologies applied for SARS-CoV-2 vaccines

Inactivated vaccines for SARS-CoV-2:
- An inactivated SARS-CoV-2 vaccine would be suitable for vaccination of the general population as well as risk groups (elderly, immuno-compromised, individuals suffering from other diseases)
- Inactivated SARS-CoV-1 vaccines were shown to be safe and immunogenic in animals (Baxter, Sinovac and others) and humans (Sinovac) *
- Inactivated SARS-CoV-2 vaccine adjuvanted with Alum (Sinovac) was shown to be safe and immunogenic in animals (mice, rats, NHPs) and clinical study will assess CpG 1018 as alternative adjuvant **

VLA2001 – SARS-CoV-2 inactivated vaccine
Summary

Vaccine design:
- SARS-CoV-2 grown on Vero cells (as used for IXIARO)
- Whole virus SARS-CoV-2 vaccine, highly-purified based on partially standardized process platform derived from IXIARO
- Inactivation by β-propiolactone
- CpG 1018 and Alum adjuvanted as favoured formulation

Further development:
- Different adjuvants expected to be tested pre-clinically
- Only 1 formulation to be tested in Phase 1/2 - planned to be initiated still this year
VLA2001 – SARS-CoV-2 inactivated vaccine
Valneva’s vaccine development update

- **Antigen:**
 - Valneva has obtained three SARS-CoV-2 strains (Institut Pasteur, France, European Virus Archive Global (EVAG) Italy, Med Uni Vie, Austria)
 - Generation of MVSBR ongoing

- **Adjuvant:**
 - Valneva has obtained CpG 1018 adjuvant (Dynavax, contained in U.S. FDA-approved HEPLISAV-B vaccine)
 - Discussions on MF59 access

- **Preclinical development:**
 - Valneva has re-activated its BSL3 lab capabilities at its R&D centers
 - Pre-clinical in-vivo experiments in mice will be performed in house to assess immunogenicity and possibly safety in mice
 - Pre-clinical in-vivo experiments in NHPs are planned to assess immune pathology and/or ADE in parallel to other pre-clinical development and Phase 1/2 study

- **Clinical material manufacturing:**
 - VERO based viral clinical manufacturing facility in Scotland will be adjusted to BSL3 (operational by mid of July)
Two novel adjuvants considered

Both adjuvants used in other commercially available vaccines

<table>
<thead>
<tr>
<th>Molecule/Target</th>
<th>CpG 1018</th>
<th>MF59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td>HEPLISAV-B</td>
<td>FLUAD</td>
</tr>
<tr>
<td>Indication</td>
<td>Hepatitis B</td>
<td>Seasonal flu</td>
</tr>
<tr>
<td>Completed Clinical Trials</td>
<td>10 ~14 000 patients</td>
<td>36 ~37 000 patients</td>
</tr>
<tr>
<td>Sales</td>
<td>35m$ (2019) Launched in 2018</td>
<td>~250m$* (2019) Not available</td>
</tr>
<tr>
<td>Indications</td>
<td>HIV, CRC, NHL</td>
<td>HIV, CMV, RSV, Parvo B19, GroupB Steptococcus, Pneumococcal Infections, HCV</td>
</tr>
<tr>
<td>Past/Current Clinical Trials</td>
<td>4 ~160 patients</td>
<td>33 ~10 000 patients</td>
</tr>
<tr>
<td>Other comments</td>
<td>April 2020: Dynavax and Sinovac announced Collaboration to Develop a COVID-19 inactivated vaccine</td>
<td>The safety profile of an MF59-adjuvanted vaccine is well established through a large safety database** Seqirus is already providing MF59® to teams researching coronavirus vaccines and is in discussions with governments and global health nonprofits about its potential use in other projects.***</td>
</tr>
</tbody>
</table>

Sources: Globaldata, Clinicaltrial.gov, vaccines SPC, Novartis Annual Report 2009-2010
VLA2001 – SARS-CoV-2 inactivated vaccine
Pre-clinical studies

- **Immunogenicity studies in BALB/c mice**
 - Two s.c (or i.m.) immunizations 3 weeks apart
 - Assess immunogenicity 2 weeks post first, and 2 and 4 weeks post second immunization
 - Assess dosing of SARS-CoV-2 antigen
 - Assess benefit of adjuvant (Alum, CpG 1018, MF59)
 - Evaluate immunization route
 - Evaluate longevity of immune response (up to 26 weeks post 2nd immunization)
 - Assess safety in mice

- **Safety, efficacy and immunogenicity studies in NHPs (Dr Le Grand, CEA/UMR1184, Paris)**
 - Detail of the studies to be defined; see als study by Gao et al. 2020 *
 - Study performed in parallel to Phase 1/2 study
 - Assess efficacy against wild type SARS-CoV-2 challenge
 - Evaluate possible ADE of disease upon challenge
 - Evaluate animals for any immune or lung pathology

Clinical Development Considerations – Early Stage
Subject to agreement with regulatory authorities

- Valneva plans for a Phase 1/2 study to rapidly progress the inactivated SARS-CoV2 vaccine candidate
- We anticipate clinical testing one formulation (virus+adjuvant) in 2 doses / 2 schedules
- Given the inactivated vaccine approach is well established and the adjuvants considered are licensed, a limited initial safety stage (I, N=20-50) is considered sufficient
- Further parallel study stages will deliver initial data in elderly subjects (Stage IIa, N=80-100) and robust data in younger adults (Stage IIb, N~1,200):
 › 300 subjects / dose group → sufficient to detect adverse events at a 1% rate
 › Sufficient sample size to provide exploratory efficacy data for pooled VLA2001 groups*
- We assume these data could be sufficient to support an Emergency Use Authorization

* For a putative 90% Vaccine Efficacy, 80% Power at a 2% Attack Rate; for a putative 70% Vaccine Efficacy, >90% power at a 5% Attack Rate
SARS-COV-2 Commercial Manufacturing Strategy

Assumptions and Estimated annual Antigen Bulk Production Capabilities

Process Summary

<table>
<thead>
<tr>
<th>Day 0</th>
<th>29</th>
<th>32</th>
<th>36</th>
<th>37</th>
<th>42</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell expansion</td>
<td>Infection & Harvest</td>
<td>Inactivation & Purification</td>
<td>Formulation</td>
<td>Fill & Finish</td>
<td>Release Testing</td>
<td></td>
</tr>
</tbody>
</table>

- BSL3 production of wild type strain
- Full disposable upstream and downstream process
- Fully-integrated, single-use disposable bioreactor (up to 600m² per reactor)
 - Compact high-cell-density
 - Multiple reactors can be operated simultaneously
 - Linear scalability from R&D to manufacturing
 - Low footprint and cost effective
- Viral inactivation by β-propiolactone
- Efficient and modular downstream process: based on well established and scalable unit operations for Valneva’s viral vaccines

Assumptions

- Harvest titer ≥7 log pfu/mL (published)
- Single harvest
- Process productivity 0.2 dose equivalent per cm²
- 2 reactors per facility operated simultaneously
- Upstream process duration: 14 days per reactor
- Up to 42 lots/year (21 per bioreactor) per facility

Annual production capacity

- Estimated 1.2m doses/lot
- Total annual production capacity for existing facility: up to 50m doses*
 - Up to 200m doses for 2 facilities or up to 250m doses for 3 facilities*

*Provided that all potential available Valneva resources are fully dedicated to COVID-19

Inactivated SARS-CoV-2 vaccine
Thank you.